NEOGEN II NAILS SYSTEM SURGICAL TECHNIQUE

CHANGZHOU KANGHUI MEDICAL INNOVATION CO., LTD Add: No.11 North Changjiang Road, Xinbei District, Changzhou, Jiangsu 213022, P.R.China Tel: +86-519-85195555 Web: www.kanghui-med.com ©Kanghui

T-20190607

TABLE OF CONTENT

INTRODUCTION

STANDARD APPROACH

- 01 NEOSUPRA Tibial Nail
- 02 Indications
- 04 Approach and Incision of the Tibia

03 Preoperative Planning

- 06 Entry Point of Tibia
- 08 Reduce the Fracture
- **10** Reamind Technique
- **11** Measuring The Length of The Tibial Nail
- 11 Assembly of Tibial Nail
- 14 Distal Locking
- 20 Proximal Locking
- 24 End Cap Insertion
- 25 Implant Removal

Warning

This description alone does not provide sufficient background for direct use of products. Instructions by an experienced surgeon in handling these products is highly recommended. Processing, Reprocessing, Care and Maintenance For general guidelines, function control and dismantling of multi-part instruments, as well as processing guidelines for implants, please contact your local sales representative..

SUPRAPATELLAR APPROACH

27 Suprapatellar Approach

ATTENTION

32 Attention

PRODUCT INFORMATION

- 33 Implants
- **35** Instruments

STABLE INTERNAL FIXATION

Herzog 10°, bend distance is at 38mm. Help reduce the risk of imping the posterior cortex.

Up to 7mm of active compression possible through proximal dynamization slot.

Threaded hole design lowers the screw back out and promotes the healing.

Low profile of locking screw lowers the risk of the soft tissue irritation.

Top view of nail

Multi-planar proximal locking hole configuration for proximal optimal fixation.

Distal nail (AP view)

Internally threaded distal locking hole located 5mm from nail tip for enhanced fixation of extreme distal fractures.

INDICATIONS

The NEOSUPRA tibial nail is indicated for fractures in the tibial shaft as well as for metaphyseal and certain intraarticular fractures of the tibial head and the pilon tibiale in adult:

- Extra-articular fractures in proximal tibia
- All shaft fractures
- Extra-articular fractures in distal tibia
- Combinations of these fractures
- Malunions and non-unions

2° distal bend facilitates implant passage and fit within the distal tibia.

STANDARD APPROACH

PREOPERATIVE PLANNING

To estimate nail diameter, place the **Radiographic Ruler (607420)** on the AP or lateral X-ray of the uninjured tibia and measure the diameter of the medullary canal to confirm nail length and diameter.

Position the C- arm for an AP view of the distal tibia. Hold the Radiographic Ruler along the leg, parallel to and at the same level as the tibia. Adjust the Radiographic Ruler until the distal tip is at the level of the physeal scar or the desired nail insertion depth. Mark the skin at that site.

Move the C-arm to the proximal tibia, replace the distal end of the Radiographic Ruler at the skin mark, and take an AP image of the proximal tibia. Read nail length directly from the ruler image, selecting the measurement at or just below the level of the anterior edge of the tibial plateau.

Position the C-arm for an AP or lateral view of the tibia at the level of the isthmus. Hold the ruler over the tibia so that the diameter gauge is centered over the narrowest part of the medullary canal. Read the diameter measurement on the circular indicator that fills the canal.

Instrument

APPROACH AND INCISION OF THE TIBIA

1. Position patient

KANOHUI A Medtronic Company

Position the patient supine on the radiolucent table. Ensure that the knee of the injured leg can be flexed at least 90°. Position the image intensifier such that visualization of the tibia including the articular surface proximally and distally is possible in AP and lateral views.

APPROACH AND INCISION OF THE TIBIA

2. Approach

Make a 2cm incision in line with the intramedullary canal. Orient the incision so that it is patellar-splitting, medial parapatellar;

Locate the entry point for the **Guide Wire with Threaded Tip**, ϕ **3.2mm (607849)** just medial to the lateral tibial eminence in the AP view, in line with the anterior cortex and intramedullary canal in the lateral view.

Attach a **Guide Wire with Threaded Tip**, ϕ **3.2mm** to the drill via the mini connector. Drill the Guide Wire until the black line. The Guide Wire should not touch

the posterior cortex.

ENTRY POINT OF TIBIA

If suboptimal Guide Wire insertion occurs, rotate the **Center Sleeve (607423)** within the **Entry Portal (607422)** to the desired location and insert another Guide Wire.

ENTRY POINT OF TIBIA

3. Open the medullary canal- drill bit

After the Guide Wire is in place, remove the Center Sleeve from the Entry Portal. Check the Guide Wire position via radiographic imaging. Advance the **Entry Reamer, \varphi12.5mm (607424)** over the Guide Wire through the Entry Portal with the stop.

Instrument

Alternative technique: Awl

Place the Awl, ϕ 12.5mm (607425) over the Guide Wire and open the medullary canal. Use a twisting motion to advance the awl to a depth of approx. 5-8cm.

Instrument

607423 Center Sleeve

Instrument

REDUCE THE FRACTURE

Open the **Guide Rod Holder (269240)**, insert the **Ball Tip Guide Rod (607800)** into the front of the Guide Rod Holder.

REDUCE THE FRACTURE

Once the **Ball Tip Guide Rod** is at the desired depth, detach the Guide Rod Holder and prepare to remove the Reducer from the tibial canal.

Advance the **Reducer (607426)** into the intramedullary canal. Use the curved tip of the Reducer to reduce the fracture, advance the Ball Tip Guide Rod past the fracture into the region of the distal epiphyseal scar. The Ball Tip Guide Rod should be center-center in the AP and later views.

Instrument

REAMING TECHNIQUE

Use the **Reamer Head**, ϕ **7.5mm (607806)** and **Flexible Reamer Shaft**, ϕ **7mm (607802)** to ream the intramedullary canal sequentially in half-millimeter increments. Stop reaming while feeling resistance, choose the nail size 1.0-1.5mm smaller than the reamer.

Note: Periodically move the reamer back and forth in the canal to clear debris from the cutting flutes.

Flexible reamer shaft matches according reamer head.

Flexible Reamer Shaft-Mono Direction	Reamer Head
Flexible Reamer Shaft-Mono Direction , ϕ 7	φ7.5,φ8.0
Flexible Reamer Shaft-Mono Direction , ϕ 8	φ8.5, φ9,φ9.5, φ10,φ10.5,φ11,φ11.5,φ12

Prevent the Ball Tip Guide Rod recession, use the end or the tip of **Cleaning Stylet (607852)** against the Ball Tip Guide Rod.

Instrument

φ7mm

MEASURING THE LENGTH OF THE TIBIAL NAIL

After the Reducer has been removed, reconfirm the Ball Tip Guide Wire placement within the distal tibia.

Slide the **Guide Rod Ruler (607831)** over the Ball Tip Guide Rod until the metal tip contacts the proximal tibia, make sure the Guide Rode Ruler not into the intramedullary canal.

Instrument

ASSEMBLY OF TIBIA NAIL

Turn the Proximal Aiming Arm into "D" position while pressing the button on the arm. Use the **Connecting Screw (607428)** to attach the **Proximal Aiming Arm (607427)** to the nail. Tighten with the **Combination Wrench (607847)**.

The nail is correctly aligned. Use a twisting motion to advance the nail. Insert the nail until it is at or below the tibial opening.

DETERMINE THE IMPLANT LENGTH

If needed, tighten the Connection Screw and Impactor (607430), use light, controlled Combination Hammer (607842) blows to seat the nail under the X ray.

Before inserting the nail, it suggests that pre-assemble the distal aiming frame to check if the distal locking screw can be inserted by the distal aiming. Then remove the distal aiming frame.

Note: Please do not hammer the proximal aiming arm directly, it will have a risk of the accuracy of proximal aiming.

DETERMINE THE IMPLANT LENGTH

1. Check proximal nail position

In the lateral view, confirm nail position by observing the nail/ Proximal Aiming Arm junction. Each circular groove on the Proximal Aiming Arm's insertion barrel represents a 5mm depth interval.

Note: If compression or dynamic locking is desired, countersink the nail approximately 10mm in order to avoid implant prominence. The dynamic travel distance is 7mm.

Instrument

607847 Combination Wrench

DETERMINE THE IMPLANT LENGTH

2. Check distal nail depth

In the AP and later views, confirm that the nail has been inserted to the desired depth.

Optimal insertion depth, which allow room for screw insertion below the fracture, is essential. Distal third tibial fractures require at least three locking screws to maintain stability.

DISTAL LOCKING

1. Distal aiming frame assembly

Put the **Thumb Wheel Assembly (607431)** and the **Connection Bolt For Distal Aiming Arm (607432)** into the **Distal Aiming Bar (607433)**.

Note: The blue button turns anticlockwise to loose, before inserting the Thumb Wheel, then it turns clockwise to tight.

Instrument

607432 Connection Bolt for Distal Aiming Arm

DISTAL LOCKING

2. Distal aiming - Position hole

Insert to the Guide Wire with Threaded tip, φ 3.2mm (607849) into the C-arm guide hole to guide the position of C-arm, the C-arm should be positioned following the line of the Guide Wire. Put the Radiolucent Rod (607845) to the position hole of Distal Aiming Arm. After the placement of C- arm, remove the Guide Wire.

Verify if the extended line of **Radiolucent Rod** (607845) through the position hole with the **Template for Screen (607846)**. Adjust the thumb wheel until the extended line goes through the position hole.

607431

Assembly

Thumb Wheel

DISTAL LOCKING

The Position Rod Sleeve (607435), Drill Sleeve (607833) and Trocar (607834) placed into the position hole. Advance the **Drill Bit for Position Hole**, *q***3.5mm (607836)** into the position hole until posterior cortices. Drill the Reamer for Position Hole (607437) with the stopper, remove the Drill Sleeve, then place the Position Rod (607438) into the position hole. Align the yellow line on the Position Rod Sleeve with the yellow mark of Orientation, lock with a " Click" sound. Please do not remove the position rod before inserting ML locking screws.

DISTAL LOCKING

3. Distal aiming- ML locking screws

Insert Distal Targeter (607434) into Distal Aiming Bar

Protector Sleeve (607832), Drill Sleeve (607833) and Trocar (607834) are placed into the distal media hole.

Remove the Trocar, Advance the $\ensuremath{\text{Drill}}$ Bit, $\ensuremath{\phi3.5mm}$ (607836) into the hole until far cortices.

Measure the screw length using the **Depth Gauge for** Locking Screws (607838). Ensure the outer sleeve is in contact with the bone and the hook grasps the far cortex. Read the screw length directly from the measuring device at the back of the Protection Sleeve.

Insert the appropriate length locking screw using the Screwdriver for Locking Screw, SW4.75 (607840).

Keep the first Reamer in the Protection Sleeve. Repeat drilling, length gauging and screw insertion in the other hole.

KANOHUI A Medtronic Company

DISTAL LOCKING

For distal fractures, it is recommended to remove the Position Rod, then insert the 4.3mm locking screw.

DISTAL LOCKING

4. Distal locking without distal aiming frame

Place a scalpel blade on the skin over the center of the hole to mark the incision point and make a stab incision.

Insert the tip of the Drill Bit, φ 3.5mm (607836) through bone cortices.

Place the Depth Gauge for Locking Screws (607838), decide the length of screw.

Use the Screwdriver for Locking Screw, SW4.5 (607840) to insert the ϕ 4.5 locking screw.

Instrument

Handle

607836

607851 AO Coupling Adaptor

607840 Screwdriver for Locking Screw, SW4.75

Quick Coupling Handle

PROXIMAL LOCKING

1. Insert compression screw

Remove the distal aiming arm. According to the classification of fracture, If the compression is needed, rotate the proximal arm into red button, insert the three-part trocar combination(protection sleeve, drill sleeve and trocar) through the dynamic hole, insert the trocar to the bone. Remove the trocar. Drill through compression hole with the **Drill Bit**, ϕ **4.1mm (607835)**.

Measure the length with depth gauge and insert the corresponding screw.

PROXIMAL LOCKING

Insert the **Compress Rod (607429)** from the end of the connection screw, rotate the compress rod to compress the fracture, stop compressing while the facture closed under image intensification.

NEOSUPRA allows for a maximum compression of 7mm. If more compression of fracture gap is needed, the conventional backstroke technique is recommended.

If there's no need for compression, no need to insert the locking screw into the dynamic hole.

PROXIMAL LOCKING

Note: Monitor the drill bit if penetrate the tibial surface under image intensification before inserting the screw. If it shows that drill bit penetrate the tibial surface, It is not recommended to use compression hole.

PROXIMAL LOCKING

2. Insert proximal locking screw

Rotate the proximal arm into corresponding color. Insert the appropriate locking screw, verify locking screw length under image intensification. The tip of the locking screws should be not project more that 1-2mm beyond the far cortex.

Repeat the steps for the proximal locking screws.

KANOHUI A Medtronic Company

END CAP INSERTION

Before inserting the cap, it is recommended that keep the screwdriver in the protection sleeve.

Remove the **Connecting Screw** with **Combination Wrench** only, the proximal aiming handling can remain to help align the end cap to the top of the nail. Attach the selected nail cap to **Flexible Screwdriver for End Cap (607841)**. Insert the nail cap into the top of the nail until it is tight.

Other sizes of end cap can't go through into the portal of Proximal Aiming Arm.

IMPLANT REMOVAL

Remove all the locking screws, keep one static locking screw, avoid the risk of nail sinking. Use the **Screwdriver for Locking Screw, SW4.75** (607840) to remove the end cap.

Thread the **Extractor (607843)** into the top of the nail, connect the **Hummer Guide (607844)** to the Extractor, tight with **Combination Wrench (607847)**.

Remove the remaining locking screw.

Use the **Combination Hammer (607842)** with a back-slapping motion to the extract the nail.

Instrument

SUPRAPATELLAR APPROACH

Instrument

607844 Hammer Guide 607842

Combination Hammer

A Medtronic Company

SUPRAPATELLAR APPROACH

Position the patient supine on the radiolucent table. Ensure that the knee of the injured leg can be flexed 10°-20°. Position the image intensifier so that visualization of the tibia, including the articular surface proximally and distally, is possible in AP and lateral views.

SUPRAPATELLAR APPROACH

With the knee in full extension, make a 2-4cm longitudinal skin incision 4cm proximal to the superior pole of the patella.

The deep incision, also longitudinal, splits the quadriceps tendon in its midsubstance, just above its insertion into the patella and enters the knee joint through the suprapatellar pouch.

Assemble Outer Protection Sleeve for SPA (607401), Protection Sleeve for SPA (607402), Protection Sleeve Handle for SPA (607403), Trocar, φ 12.5mm for SPA (607404)

Blunt dissection can be used to loosen the patella in the suprapatellar pouch, allowing the patella to lift off. Displace the patella anteriorly.

Instrument

607403 Protection Sleeve Handle for SPA

SUPRAPATELLAR APPROACH

In the AP view the entry point is in line with the axis of the intramedullary canal and with the lateral tubercle of the intercondylar eminence.

In the lateral view the entry point is at the ventral edge of the tibial plateau.

Insert the Guide Wire into the Protection Sleeve Handle for SPA, check if the Guide Wire is vertical to the femur to ensure the entry point.

After removal of the Trocar, insert the **Center Sleeve** for SPA (607405) through the inner **Protection** Sleeve. Advance to the anterior surface of the tibia.

Slight adjustment of the knee flexion (between 10° and 20°) will provide the ideal radiographic location for the starting point and insertion of a guide wire.

SUPRAPATELLAR APPROACH

Insert the Guide Wire approximately 4cm-6cm and check the position under imaging in the AP and lateral views.

Adjustments to the guide wire location can be "dialed-in" by rotating the centering sleeve to place a second Guide Wire while the first guide wire remains in place.

After correct placement of the second guide wire, remove the initial guide wire and Honeycomb Guide Sleeve.

SUPRAPATELLAR APPROACH

Use a **Guide Wire,\phi3.2mm (607850)** to anchor the handle assembly to the femoral condyles, advance the Guide Wire until the far cortices, maintain the position of the handle assembly during the procedure.

This anchor prevents the cannula from backing out and off of the tibia.

Place the Entry Reamer for SPA, ϕ 12.5mm (607406) over the Guide Wire through the Protection Sleeve for SPA (607402) and down to the bone.

The Guide Wire and Entry Reamer should not reach the posterior cortex.

 ${\sf Remove}\, the\, {\sf Entry}\, {\sf Reamer}\, and\, {\sf guide}\, {\sf wire}.$

After opening medullary canal, please refer to the standard approach.

Note: it needs to remove the protect sleeve, when insert the nail.

ATTENTION

The blue button turns clockwise to loose before inserting the Thumb Wheel, it turns anticlockwise to tighten. The component is inside the Proximal Aiming Arm.

Do not put the proximal arm this way while the black line aligned. The component will drop from the Proximal Aiming Arm, it causes the loss efficacy of the Proximal Aiming Arm rotation.

Instrument

607406

Entry Reamer for SPA,

Guide Wire, φ3.2mm

Φ12.5mm

607850

607407 Proximal Aiming Arm for SPA

NEOSUPRA Tibia Nails

Code	Model No.	Size
35040025	JJD V	φ 8.3X250mm
35040526	JJD V	φ 8.3X265mm
35040028	JJD V	φ 8.3X280mm
35040529	JJD V	φ 8.3X295mm
35040031	JJD V	φ 8.3X310mm
35040532	JJD V	φ 8.3X325mm
35040034	JJD V	φ 8.3X340mm
35040535	JJD V	φ 8.3X355mm
35040037	JJD V	φ 8.3X370mm
35040538	JJD V	φ 8.3X385mm
35040040	JJD V	φ 8.3X400mm
35040541	JJD V	φ 8.3X415mm
35041025	JJD V	φ 9X250mm
35041526	JJD V	φ 9X265mm
35041028	JJD V	φ 9X280mm
35041529	JJD V	φ 9X295mm
35041031	JJD V	φ 9X310mm
35041532	JJD V	φ 9X325mm
35041034	JJD V	φ 9X340mm
35041535	JJD V	φ 9X355mm
35041037	JJD V	φ 9X370mm
35041538	JJD V	φ 9X385mm
35041040	JJD V	φ 9X400mm
35041541	JJD V	φ 9X415mm

Specificati	on
Prox (mm)	12
Material	TC4

Code	Model No.	Size
35042025	JJD V	φ 10X250mm
35042526	JJD V	q 10X265mm
35042028	JJD V	q 10X280mm
35042529	JJD V	φ 10X295mm
35042031	JJD V	φ 10X310mm
35042532	JJD V	φ 10X325mm
35042034	JJD V	q 10X340mm
35042535	JJD V	φ 10X355mm
35042037	JJD V	φ 10X370mm
35042538	JJD V	φ 10X385mm
35042040	JJD V	q 10X400mm
35042541	JJD V	φ 10X415mm
35043025	JJD V	q 11X250mm
35043526	JJD V	φ 11X265mm
35043028	JJD V	q 11X280mm
35043529	JJD V	φ 11X295mm
35043031	JJD V	q 11X310mm
35043532	JJD V	q 11X325mm
35043034	JJD V	q 11X340mm
35043535	JJD V	φ 11X355mm
35043037	JJD V	q 11X370mm
35043538	JJD V	φ 11X385mm
35043040	JJD V	q 11X400mm
35043541	JJD V	q 11X415mm

PRODUCT INFORMATION

NEOSUPRA Locking Screws

Specification	า
Core (mm)	4
Material	TC4

Code	Model No.	Size	Function Length
35063030	JSDIV	φ 5.0X30mm	25mm
35063035	JSDIV	φ 5.0X35mm	30mm
35063040	JSDIV	φ 5.0X40mm	35mm
35063045	JSDIV	φ 5.0X45mm	40mm
35063050	JSDIV	φ 5.0X50mm	45mm
35063055	JSDIV	φ 5.0X55mm	50mm
35063060	JSDIV	φ 5.0X60mm	55mm
35063065	JSDIV	φ 5.0X65mm	60mm
35063070	JSDIV	φ 5.0X70mm	65mm
35063075	JSDIV	φ 5.0X75mm	70mm
35063080	JSDIV	φ 5.0X80mm	75mm
35063085	JSDIV	φ 5.0X85mm	80mm
35063090	JSDIV	φ 5.0X90mm	85mm
35063095	JSDIV	φ 5.0X95mm	90mm

* Function Length:

Specificatio	n
Core (mm)	3.4
Material	TC4

Code	Model No.	Size	Function Length
35062126	JSDVII	φ 4.3X26mm	26mm
35062130	JSDVII	φ 4.3X30mm	30mm
35062135	JSDVII	φ 4.3X35mm	35mm
35062140	JSDVII	q 4.3X40mm	40mm
35062145	JSDVII	φ 4.3X45mm	45mm
35062150	JSDVII	φ 4.3X50mm	50mm

* Function Length:

 $\phi 4.3$ locking screw is for AP distal aiming position hole. Insert $\phi 4.5$ locking screw if use free hand.

1

Specification	
Core (mm)	3.4
Material	TC4

Code	Model No.	Size	Function Length
35062030	JSDIV	φ 4.5X30mm	25mm
35062035	JSDIV	φ 4.5X35mm	30mm
35062040	JSDIV	φ 4.5X40mm	35mm
35062045	JSDIV	φ 4.5X45mm	40mm
35062050	JSDIV	φ 4.5X50mm	45mm
35062055	JSDIV	φ 4.5X55mm	50mm

* Function Length: 🛁

 -	 	ĥ
	۰.	6
	 ►	

NEOSUPRA End Caps

	Specification	
Material		TC4

Code	Model No.	Size
35070005	JGMV	φ 13,+5mm
35070010	JGMV	φ 13,+10mm
35070015	JGMV	φ 13, +15mm

SupraPatellar Instrument

Code	Product Description	Qty
607042	Suprapatellar Instruments Set	1
607044	Empty Box for Suprapatellar Instruments	1
607440	Empty Box for Locking Screw	1
607401	Outer Protection Sleeve for SPA	2
607402	Protection Sleeve for SPA	1
607403	Protection Sleeve Handle for SPA	1
607404	Trocar, φ 12.5mm for SPA	1
607405	Center Sleeve for SPA	1
607406	Entry Reamer for SPA, φ 12.5mm	1
607407	Proximal Aiming Arm for SPA	1
607408	Connection Screw for SPA	1
607409	Compress Rod for SPA	1
607410	Extended Rod, Cannulated, for SPA	1

PRODUCT INFORMATION

Conventional Instrument

Code	Product Description
607041	Standard Instruments Set (With Distal Aiming)
607043	Empty Box for Standard Instruments
607439	Spare Parts Set
607420	Radiographic Ruler
607421	Tissue Protector
607422	Entry Portal
607423	Center Sleeve
607424	Entry Reamer, φ 12.5mm
607425	Awl, φ 12.5mm
607426	Reducer
607427	Proximal Aiming Arm
607428	Connecting Screw
607429	Compress Rod
607430	Impactor
269240	Guide Rod Holder
607800	Ball Tip Guide Rod
607802	Flexible Reamer Shaft, φ 7mm
607803	Flexible Reamer Shaft, q 8mm
607806	Reamer Head, φ 7.5mm
607807	Reamer Head, φ 8.0mm
607808	Reamer Head, φ 8.5mm
607809	Reamer Head, φ 9.0mm
607810	Reamer Head, φ 9.5mm
607811	Reamer Head, φ 10.0mm
607812	Reamer Head, φ 10.5mm
607813	Reamer Head, q 11.0mm
607814	Reamer Head, φ 11.5mm
607815	Reamer Head, q 12.0mm
607831	Guide Rod Ruler
607832	Protetion Sleeve
607833	Drill Sleeve
607834	Trocar
607835	Drill Bit, q 4.1mm
607836	Drill Bit, q 3.5mm
607837	Drill stopper, q 4.1mm
607838	Depth Gauge for Locking Screws
607839	Quick Coupling Handle
607840	Screwdriver for Locking Screw,SW4.75
607841	Flexible Screwdriver for End Cap,SW4.75

PRODUCT INFORMATION

Code	Product Description	Qty
607842	Combination Hammer	1
607843	Extractor	1
607844	Hammer Guide	1
607847	Combination wrench	1
607848	Allen Key,SW4.75	1
607849	Guide Wire with Threaded tip, ϕ 3.2mm	2
607850	Guide Wire, φ 3.2mm	2
607851	AO Coupling Adaptor	1
607852	Cleaning Stylet	1
607431	Thumb Wheel Assembly (Distal Aiming)	1
607432	Connection Bolt for Distal Aiming Arm (Distal Aiming)	1
607433	Distal Aiming Bar (Distal Aiming)	1
607434	Distal Targeter (Distal Aiming)	1
607435	Position Rod Sleeve (Distal Aiming)	1
607436	Drill Bit for Position Hole, ϕ 3.5mm (Distal Aiming)	2
607437	Reamer for Position Hole (Distal Aiming)	1
607438	Position Rod (Distal Aiming)	1
607845	Radiolucent Rod (Distal Aiming)	1
607846	Template for Screen (Distal Aiming)	1

SupraPatellar Instrument

100

Conventional Instrument

